31 research outputs found

    Model-based target sonification on mobile devices

    Get PDF
    We investigate the use of audio and haptic feedback to augment the display of a mobile device controlled by tilt input. We provide an example of this based on Doppler effects, which highlight the user's approach to a target, or a target's movement from the current state, in the same way we hear the pitch of a siren change as it passes us. Twelve participants practiced navigation/browsing a state-space that was displayed via audio and vibrotactile modalities. We implemented the experiment on a Pocket PC, with an accelerometer attached to the serial port and a headset attached to audio port. Users navigated through the environment by tilting the device. Feedback was provided via audio displayed via a headset, and by vibrotactile information displayed by a vibrotactile unit in the Pocket PC. Users selected targets placed randomly in the state-space, supported by combinations of audio, visual and vibrotactile cues. The speed of target acquisition and error rate were measured, and summary statistics on the acquisition trajectories were calculated. These data were used to compare different display combinations and configurations. The results in the paper quantified the changes brought by predictive or 'quickened' sonified displays in mobile, gestural interaction

    GpsTunes: controlling navigation via audio feedback

    Get PDF
    We combine the functionality of a mobile Global Positioning System (GPS) with that of an MP3 player, implemented on a PocketPC, to produce a handheld system capable of guiding a user to their desired target location via continuously adapted music feedback. We illustrate how the approach to presentation of the audio display can benefit from insights from control theory, such as predictive 'browsing' elements to the display, and the appropriate representation of uncertainty or ambiguity in the display. The probabilistic interpretation of the navigation task can be generalised to other context-dependent mobile applications. This is the first example of a completely handheld location- aware music player. We discuss scenarios for use of such systems

    The Tangibility of Personalized 3D-Printed Feedback May Enhance Youths’ Physical Activity Awareness, Goal Setting, and Motivation: Intervention Study

    Get PDF
    Background:In the United Kingdom, most youth fail to achieve the government guideline of 60 min of moderate to vigorous physical activity (MVPA) daily. Reasons that are frequently cited for the underachievement of this guideline include (1) a lack of awareness of personal physical activity levels (PALs) and (2) a lack of understanding of what activities and different intensities contribute to daily targets of physical activity (PA). Technological advances have enabled novel ways of representing PA data through personalized tangible three-dimensional (3D) models. Objective:The purpose of this study was to investigate the efficacy of 3D-printed models to enhance youth awareness and understanding of and motivation to engage in PA. Methods:A total of 39 primary school children (22 boys; mean age 7.9 [SD 0.3] years) and 58 secondary school adolescents (37 boys; mean age 13.8 [SD 0.3] years) participated in a 7-week fading intervention, whereby participants were given 3D-printed models of their previous week’s objectively assessed PALs at 4 time points. Following the receipt of their 3D model, each participant completed a short semistructured video interview (children, 4.5 [SD 1.2] min; adolescents, 2.2 [SD 0.6] min) to assess their PA awareness, understanding, and motivation. Data were transcribed verbatim and thematically analyzed to enable key emergent themes to be further explored and identified. Results:Analyses revealed that the 3D models enhanced the youths’ awareness of and ability to recall and self-evaluate their PA behaviors. By the end of the study, the youths, irrespective of age, were able to correctly identify and relate to the government’s PA guideline represented on the models, despite their inability to articulate the government's guideline through time and intensity. Following the fourth 3D model, 72% (71/97) of the youths used the models as a goal-setting strategy, further highlighting such models as a motivational tool to promote PA. Conclusions:The results suggest that 3D-printed models of PA enhanced the youths’ awareness of their PA levels and provided a motivational tool for goal setting, potentially offering a unique strategy for future PA promotion

    Perceptions of Visualizing Physical Activity as a 3D-Printed Object: Formative Study

    Get PDF
    Background: The UK government recommends that children engage in moderate-to-vigorous physical activity for at least 60 min every day. Despite associated physiological and psychosocial benefits of physical activity, many youth fail to meet these guidelines partly due to sedentary screen-based pursuits displacing active behaviors. However, technological advances such as 3D printing have enabled innovative methods of visualizing and conceptualizing physical activity as a tangible output. Objective: The aim of this study was to elicit children’s, adolescents’, parents’, and teachers’ perceptions and understanding of 3D physical activity objects to inform the design of future 3D models of physical activity. Methods: A total of 28 primary school children (aged 8.4 [SD 0.3] years; 15 boys) and 42 secondary school adolescents (aged 14.4 [SD 0.3] years; 22 boys) participated in semistructured focus groups, with individual interviews conducted with 8 teachers (2 male) and 7 parents (2 male). Questions addressed understanding of the physical activity guidelines, 3D model design, and both motivation for and potential engagement with a 3D physical activity model intervention. Pupils were asked to use Play-Doh to create and describe a model that could represent their physical activity levels (PAL). Data were transcribed verbatim and thematically analyzed, and key emergent themes were represented using pen profiles. Results: Pupils understood the concept of visualizing physical activity as a 3D object, although adolescents were able to better analyze and critique differences between low and high PAL. Both youths and adults preferred a 3D model representing a week of physical activity data when compared with other temporal representations. Furthermore, all participants highlighted that 3D models could act as a motivational tool to enhance youths’ physical activity. From the Play-Doh designs, 2 key themes were identified by pupils, with preferences indicated for models of abstract representations of physical activity or bar charts depicting physical activity, respectively. Conclusions: These novel findings highlight the potential utility of 3D objects of physical activity as a mechanism to enhance children’s and adolescents’ understanding of, and motivation to increase, their PAL. This study suggests that 3D printing may offer a unique strategy for promoting physical activity in these groups

    Sonically-enhanced widgets: comments on Brewster and Clarke, ICAD 1997

    Get PDF
    This paper presents a review of the research surrounding the paper “The Design and Evaluation of a Sonically Enhanced Tool Palette” by Brewster and Clarke from ICAD 1997. A historical perspective is given followed by a discussion of how this work has fed into current developments in the area

    Understanding Youths’ Ability to Interpret 3D-Printed Physical Activity Data and Identify Associated Intensity Levels: Mixed-Methods Study (Preprint)

    Get PDF
    Background:A significant proportion of youth in the United Kingdom fail to meet the recommended 60 minutes of moderate-to-vigorous physical activity every day. One of the major barriers encountered in achieving these physical activity recommendations is the perceived difficulty for youths to interpret physical activity intensity levels and apply them to everyday activities. Personalized physical activity feedback is an important method to educate youths about behaviors and associated outcomes. Recent advances in 3D printing have enabled novel ways of representing physical activity levels through personalized tangible feedback to enhance youths’ understanding of concepts and make data more available in the everyday physical environment rather than on screen. Objective:The purpose of this research was to elicit youths’ (children and adolescents) interpretations of two age-specific 3D models displaying physical activity and to assess their ability to appropriately align activities to the respective intensity. Methods:Twelve primary school children (9 boys; mean age 7.8 years; SD 0.4 years) and 12 secondary school adolescents (6 boys; mean age 14.1 years; SD 0.3 years) participated in individual semistructured interviews. Interview questions, in combination with two interactive tasks, focused on youths’ ability to correctly identify physical activity intensities and interpret an age-specific 3D model. Interviews were transcribed verbatim, content was analyzed, and outcomes were represented via tables and diagrammatic pen profiles. Results:Youths, irrespective of age, demonstrated a poor ability to define moderate-intensity activities. Moreover, children and adolescents demonstrated difficulty in correctly identifying light- and vigorous-intensity activities, respectively. Although youths were able to correctly interpret different components of the age-specific 3D models, children struggled to differentiate physical activity intensities represented in the models. Conclusions:These findings support the potential use of age-specific 3D models of physical activity to enhance youths’ understanding of the recommended guidelines and associated intensities

    Tangible data visualization of physical activity for children and adolescents: A qualitative study of temporal transition of experiences

    Get PDF
    Children and adolescents in the UK are increasingly at risk of significant health problems due to physical inactivity. While activity trackers and fitness applications have focused on addressing this problem in youth, poor wear-time compliance and usability and accessibility issues have been frequently reported in the literature as barriers to engagement. Physicalization of data offers an alternative approach to engage with physical activity (PA). In this paper, we present the results of a seven-week qualitative study with 97 primary and secondary school children (8–14 years old). We took a temporal approach to collect children’s and adolescents’ perspectives in short video interviews as they received 3D-printed models representing their faded-weekly PA levels. Our findings showed that children’s and adolescents’ emotional engagement with the models remained high throughout the study, while their reflection on the models and their knowledge of what constitutes PA and its different types evolved over time. The findings from this temporal study suggest that tangible data visualization of PA evokes experiences such as embodied reflection, active learning, emotional engagement, and temporality of PA experience. Therefore, we argue that the motivational impact of regular tangible visualizations as a form of feedback should be considered alongside wearable trackers in addressing childhood inactivity

    A landscape of design: interaction, interpretation and the development of experimental expressive interfaces

    Get PDF
    This paper presents the initial research insights of an ongoing research project that focuses upon understanding the role of landscape, its use as a resource for designing interfaces for musical expression, and as a tool for leveraging ethnographic understandings about space, place, design and musical expression. We briefly discuss the emerging research and reasoning behind our approach, the site that we are focusing on, our participatory methodology and conceptual designs. This innovative research is envisaged as something that can engage and interest the conference participants, encourage debate and act as an exploratory platform, which will in turn inform our research, practice and design

    Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial.

    Get PDF
    BACKGROUND: Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for exercise. This study tested three hypotheses: H1 - receipt of social feedback generates higher step-counts than receipt of no feedback; H2 - receipt of social feedback generates higher step-counts than only receiving feedback on one's own walking; H3 - receipt of feedback on one's own walking generates higher step-counts than no feedback (H3). METHODS: A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy male participants (n = 165) aged 18-40 were given phones pre-installed with an app that recorded steps continuously, without the need for user activation. Participants carried these with them as their main phones for a two-week run-in and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical activity and perceived barriers to physical activity. RESULTS: Fifty-five participants were allocated to each group; 152 completed the study and were included in the analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166-0.782) and that for the social feedback group, 69 % higher (effect on log step-count = 0.526, 95 % CI = 0.212-0.840). The difference between the two feedback groups (individual vs social feedback) was not statistically significant. CONCLUSIONS: Always-on smartphone apps that provide step-counts can increase physical activity in young to early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this population
    corecore